Exercise 98

A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$, how fast is the water level rising when the water is 5 cm deep?

Solution

The water takes the shape of a cone as it pours into the cup, so its volume is

$$
V=\frac{1}{3} \pi r^{2} h .
$$

The aim is to find $d h / d t$ when $h=5$, so eliminate r in favor of h by using the geometry of the cup.

As a result, the volume becomes

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(\frac{3}{10} h\right)^{2} h \\
& =\frac{1}{3} \pi\left(\frac{9}{100} h^{2}\right) h \\
& =\frac{3 \pi}{100} h^{3} .
\end{aligned}
$$

Differentiate both sides with respect to t by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}\left(\frac{3 \pi}{100} h^{3}\right) \\
\frac{d V}{d t} & =\frac{3 \pi}{100}\left(3 h^{2}\right) \cdot \frac{d}{d t}(h)
\end{aligned}
$$

Set $d V / d t=2$ and $h=5$ and solve for $d h / d t$.

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{9 \pi}{100} h^{2} \frac{d h}{d t} \\
2 & =\frac{9 \pi}{100}(5)^{2} \frac{d h}{d t}
\end{aligned}
$$

Therefore, the rate at which the water level is rising when the water is 5 cm deep is

$$
\frac{d h}{d t}=\frac{8}{9 \pi} \approx 0.282942 \frac{\mathrm{~cm}}{\mathrm{~s}} .
$$

